
7

A Neural Approach to Establishing
Technical Diagnosis for
Machine Tools

7.1 INTRODUCTION TO NEURAL
NETWORK THEORY

The end of the 1980s signaled a period of research regarding the de-
velopment of a new approach to data processing within computational
systems. This approach earned several names: connectionism, neural net-
work, neural processing, and parallel processing; all of these terms are
synonyms for that kind of information processing that tries to simulate
the thought processes of the human brain based on experience, rather
than the classical method of that based on algorithms.

7.1.1 Information Neural Processing

Data neural processing means to elaborate and study networks with
adaptable nodes; these networks store experiential knowledge, and are
available to be utilized for the purpose for which the network was cre-
ated. The word “adaptable” used for the network nodes represents that
property of a node which is able to react correctly even if the stimulus
received is not precisely the same as the ones already learned.

Copyright 2002 by Marcel Dekker, Inc. All Rights Reserved.



194 Chapter 7

FIGURE 7.1 Adaptable node, main element of a neural network.

The adaptable node, the main element of a neural network, can
be represented as an electronic device with a manifold input channel
(Fig. 7.1). It consists of one output channel and two special connections:
one for introducing data into the learning process, and the other as a
switch of learning/utilizing nodes. The F node function is the way in
which an output parameter is associated with each input dataset. For
example, the function of an adaptive three-input node can look like a
logic table in which the response is 1 only when the input dataset has
a single 1 value (Table 7.1). This representation of an adaptive node
makes obvious the association with the neuron, the adaptive node of the
brain. The human brain has an average of 1011 neurons, organized in
complex structures.

The neuron (Fig. 7.2) consists of a cellular body called the peri-
karion, which contains the nucleus, and two sorts of protoplasmic pro-
longation: the axon (cylindrical shaped, long, usually single) and the
dendrites (many and short). The dendrites represent the input channel

TABLE 7.1 The Function of an Adaptive Three-Input
Node Can Look Like a Logic Table

x1 0 0 0 0 1 1 1 1
x2 0 0 1 1 0 0 1 1
x3 0 1 0 1 0 1 0 1
Y 0 1 1 0 1 0 0 0

Copyright 2002 by Marcel Dekker, Inc. All Rights Reserved.



Neural Approach to Technical Diagnosis 195

FIGURE 7.2 Neuron schema.

into the neuron, while the axon is the output channel. An electric activity
characterized by short and fast impulses (about 100 impulses/second)
has been noticed in the axon when the neuron “emits.” Neurons are
interconnected through the ends of the dendrites, called synapses. One
neuron can receive 5000 to 15,000 input signals from other neurons’
axons. Synapses can be excitators, if they help the neuron to emit, or
inhibitors, if they discourage the neuron from emitting.

The informational model of a neuron was first proposed in 1943 by
the neurophysiologist Warren McCulloch and the logician Walter Pitts.
This model is still the basis of information neural processing. According
to this model, the synaptic modifications are continuous, and the neuron
takes into consideration all of the synaptic signals, both excitator and
inhibitor; then, it sums up their effects and determines whether to emit
them through the axon. Number 1 is associated with the emission state,
and 0 with the repose state.

Copyright 2002 by Marcel Dekker, Inc. All Rights Reserved.



196 Chapter 7

If X denotes the neuron state and the synaptic connection effect
is represented by a weight W , then the effect of a synapse upon the
neuron is given by the product X · W . The weight W can have values
within the interval −1, . . . , 1; the negative values characterize the in-
hibitor synapses. Since there is a multitude of synapses, an index j has
to be attached, which designates Xj and Wj as the input and the weight
of the synapse j, respectively. The neural model constantly adds those
effects and compares them with a threshold value T ; if the sum exceeds
the threshold, the neuron emits. For the McCullogh and Pitts neuron,
this emission rule can be described mathematically by the relation:

X1W1 + X2W2 + · · · + XjWj + · · · + XnWn > T. (7.1)

The electronic interpretation of this relational model is given in
Figure 7.3. The basic components are: the summator amplifier, which
provides an output voltage proportional to the sum of all products X ·W ,
and the voltage comparator, which generates a voltage equal to 1 if
the output voltage of the summator exceeds the threshold voltage T .
The value of the adjustable weights W is set automatically during the
learning process.

On the basis of the model presented so far, two sorts of neural net-
works have been theorized: feedforward and feedback networks. Within
these networks neurons are distributed in one or more layers that cannot
be accessed directly; they are called hidden layers and have free access
only at the input channel and, respectively, at the output channel of
the network (Figure 7.4). The feedforward networks operate between
the input channel and output terminals, learning to associate output
data with the input data. In feedback networks, the information can
run within a loop from the input to the output channel and vice versa,
creating a so-called internal input channel. Both types of network oper-

FIGURE 7.3 Electronic interpretation of Eq. (7.1) relational model.

Copyright 2002 by Marcel Dekker, Inc. All Rights Reserved.



Neural Approach to Technical Diagnosis 197

FIGURE 7.4 Neurons distributed in one or more layers that cannot be accessed
directly.

ate under emission rules that determine whether the neuron will emit
for each dataset. These rules are associated with each connection in the
network, and they determine the weight of each of those connections.
As a consequence of the application of the emission rules, the network
becomes able to generalize, that is, to provide an adequate response for
input datasets that were not introduced during the learning process.

The learning algorithms, also called learning laws, are based on the
following condition: when the weights are recalculated for a new input
dataset, no discontinuity with what was done for previous sets should
occur. The biological basis of these laws derives from the hypothesis
that, if a neuron is part of a network in which a synaptic input emits
continuously at the same time as the neuron, then the weight of that
synaptic connection will increase. The disadvantage of this theory is
that it leaves the responsibility of the neuron’s emission to the action
(eventually learned) of some synapses. Although the technique proposed
by Hebb was useful for the investigation of the neural network, another
rule proved more suitable: the delta rule, which can be described through
the following steps:

1. Select an input dataset.
2. When an error is detected in the network’s response, calculate

the deviation from the desired output parameter.
3. Adjust the active weights (i.e., those which are emitting) and

the threshold value, in order to partially correct the error.
4. Return to step 1 until no input dataset causes errors.

Copyright 2002 by Marcel Dekker, Inc. All Rights Reserved.



198 Chapter 7

FIGURE 7.5 Perceptron electronic model: Aj are the preprocessing units,
called associative units.

The McCulloch and Pitts model was improved by Frank Rosenblatt
by adding fixed preprocessing units; their duty is to extract specific
features from the input signals. Thus the perceptron was born, which is
defined as a model recognition device. Figure 7.5 shows the perceptron
electronic model; Aj are the preprocessing units, called associative units.
In terms of these units, the perceptron order is defined; the preceptron
order is equal to the number of inputs of the associative unit with the
largest number of inputs.

7.1.2 The Learning Process in
Neural Networks

The information neural processing paradigm principle states that neu-
ral networks can be trained merely through examples from the exterior.
In other words, any learning algorithm utilized in multilayer networks
is based on output error estimation. This is the so-called hard learn-
ing problem, and it is one of the most important problems in neural
networks.

A major step in overcoming this problem was made in 1982 by
John Hopfield, an American biologist and chemist; he presented neu-
ral networks as content addressable memories (associative memories).
Through his work, he made two major contributions. He developed a
type of network analysis that uses the concept of energy, concluding
that a network reaches, while operating, its energetic minimum, after

Copyright 2002 by Marcel Dekker, Inc. All Rights Reserved.



Neural Approach to Technical Diagnosis 199

which the output signal set does not change (i.e., stability occurs). In
addition, he showed that learning rules, such as the delta rule, can be
utilized to adjust the network parameters purposely to create the ener-
getic minimum. The Hopfield neuron model has the characteristic pa-
rameters VI , the output signal (V = 0 if the neuron does not emit;
V = 1 if the neuron emits); Tij , the weight of the connection of the
neuron i with the neuron j (T = 0 if the neuron i is not connected to
the neuron j); and UI , the threshold value for which the neuron emits.
In short:

Vi becomes 1 if
∑
j �=i

TijVj > Ui

Vi becomes 0 if
∑
j �=i

TijVj < Ui

(7.2)

The energy of a neuron can be calculated with

Ei = −Vi

(∑
TijVj − Ui

)
(7.3)

The amount between brackets is called the activation energy and is de-
noted by Ai. In order to have a stable state of a neural network, none of
the nodes should be activated in such a way that the emission conditions
change. So, if a neuron is emitting (V = 1), its activation will be posi-
tive, so that the emission is not further stopped; the same is true if the
node is not emitting (V �= 1); its activation will be negative, so that it
does not further emit. Consequently, when the neural network changes
its state, either it keeps the same energetic level, or it goes down to a
lower energetic level. When lower energy levels are no longer accessible,
the network remains stable at its most recent state.

From an energetic analysis perspective, it becomes clear that a
learning procedure application, such as the delta rule, is simply a way
to decrease the state energy to a minimum. The Hopfield model has
its disadvantages: the most important is that the neural network “gets
stuck” in false energetic minimums. The way that a neural system runs
out of false minimums was discovered by Geoffrey Hinton; it consists
of “noise” utilization (i.e., applying an uncertainty degree to the state
energy). Intuitively, this method can be illustrated by representing the
network state as a ball on a waved surface (Fig. 7.6). If the ball has
an internal property which makes it “jump,” it is probable that it will
spend the longest time in the deepest valley it can reach.

Copyright 2002 by Marcel Dekker, Inc. All Rights Reserved.



200 Chapter 7

FIGURE 7.6 Representing the network state as a ball on a waved surface.

At the crux of any neural network activation remains the phe-
nomenon of increasing the aleatory motion of gaseous molecules while
temperature increases, discovered by Ludwig Boltzmann at the end of
the nineteenth century. Analogously with Boltzmann’s research, the un-
certainty degree, introduced to assess a neural network state, was named
temperature. Thus, at zero temperature the network will behave accord-
ing to the Hopfield model; at higher temperatures, an uncertainty degree
proportional to the temperature has to be introduced in the neuron acti-
vation function. This procedure has the advantage of helping the network
to run out of its false minimums but there is another side of the coin: the
network no longer remains stable. Hinton proposed a “thermal regime”
be utilized to enable this trouble to be outrun: starting the network at
a high temperature and then cooling it gradually until it reaches the
“thermal equilibrium.” In this way, the network has the greatest chance
to end in a state associated with the lowest minimum to be reached for
specific input data. This manner of approach to neural networks has
been called “simulated tempering.”

The introduction of temperature in the neuron activation function
is done through a probabilistic function, called the emission probability
Boltzmann function:

p(1) =
1

1 + exp(−A/T )
(7.4)

The plot of this function is represented in Figure 7.7 for “temperatures”
of 0.5 and 0.25 (these are arbitrary units, not related either to Celsius
or Kelvin degrees or to other measure units of temperature as a physical
parameter). The result of the introduction of temperature as a mod-
erator in the neuron activation function can be pursued in changes of
the way in which the electron’s emission is interpreted. According to
the Hopfield model, if the A activation were negative, the neuron would
not emit [p(1) = 0]; if the activation were positive, the neuron would

Copyright 2002 by Marcel Dekker, Inc. All Rights Reserved.



Neural Approach to Technical Diagnosis 201

FIGURE 7.7 Plot of emission probability Boltzmann function.

have emitted [p(1) = 1]; this is shown in Figure 7.8a. The new model,
named the Boltzmann machine, suggests that, for negative values of the
A activation, there is a probability p(1) = 1 that the neuron emits; this
probability goes to zero as A becomes negatively smaller and smaller.
Similarly, there is a probability p(0) that the neuron does not emit,
even if the activation is positive; this probability gets lower when the
activation gets higher (Fig. 7.8b).

FIGURE 7.8 (a) Hopfield model; (b) new model, named the Boltzmann
machine.

Copyright 2002 by Marcel Dekker, Inc. All Rights Reserved.



202 Chapter 7

The Boltzmann machine showed that the probability that the net-
work comes to an end in a certain state depends nearly exclusively on
that state energy. That means that, through the learning process, the
energies corresponding to the minimums of the system have to be well
controlled.

Starting from the assumption that not all units of a network are
defined by the learning dataset, Hinton showed the necessity of hidden
units, essential for solving the hard learning problem. The learning pro-
cedure, based merely on information as to whether the visible units be-
have correctly, has to ensure that hidden units develop their own correct
weights and thresholds, too. If we assume a neural network has ν visible
units, it can have 2ν possible states. If S1, S2, . . . , Sr are input datasets
for training the network through visible units, state probabilities can be
calculated: P+(S1), P+(S2), . . . , P+(Sr), where the “+” sign is used
to indicate that these are desired probabilities. On the other hand, the
“−” sign is used for the same probabilities, but results from the free
(untrained) run of the network, that is, P−(S1), P−(S2), . . . , P−(Sr).
The function introduced to measure “the distance” between these two
probability sets is:

G =
∑

a

P+(Sa) ln
P+(Sa)
P−(Sa)

(7.5)

The first term of the previous relation, P+(Sa), makes the states with
the largest occurrence probability have the largest effect upon the sum;
the natural logarithm becomes zero when the two probability sets are
identical [P+(Sa) = P−(Sa)].

It can be shown that the “distance” changing rate between the two
probability sets depends on the trained, respectively, untrained, visible
units’ temperature and average state probabilities, after the relation:

∂G

∂wij
= − 1

T
(p+

ij − p−
ij) (7.6)

The meaning of this relation consists of the following: in order to lower
the rate G by changing the weight wij , all that needs to be known is the
local information (p+

ji − p−
ji). If this term is positive, the weight wij has

to be increased; in the opposite case, it has to be decreased. Obviously,
the process is finished when G = 0, so the network learned to reproduce
the state probabilities, and it is considered completely trained.

Copyright 2002 by Marcel Dekker, Inc. All Rights Reserved.



Neural Approach to Technical Diagnosis 203

As shown before, there are two types of neural networks: feedfor-
ward and feedback. For feedback networks it is simple to introduce into
the loop the signal associated with the output error, and this is done
on purpose to diminish this error while training. As far as feedforward
networks are concerned, they are the most utilized ones, and they can-
not work freely because of the lack of reaction to inform; therefore, a
training method for the hidden units is necessary, through a process of
propagation of the measured error on a backward direction, from the
output channel.

The hidden layers can be considered the location in the network in
which input parameters are partially processed and labeled before the
final result is reached in the output layer. In these layers, representa-
tions are formed, which are not provided during the training process.
A generalization of the delta rule forms the basis of the hidden units’
behavior through the converse error propagation process. The goal of
this method is to minimize the overall output error εp, defined as the
half-sum of the squares of all neurons’ output errors:

εp =
1
2

∑
j

(tpj − opj)2 (7.7)

where tpj is the target output of the neuron j for the input dataset p;
opj is the actual output of the neuron j for that input dataset.

The training process through converse error propagation has two
steps. The first is the forward step, during which the input data are
applied and let run to the output channel. The output parameters are
calculated and compared to the target parameters (which have to be
known). During the backward step, the errors (those resulting as a con-
sequence of the comparison in step one) are propagated backwards to the
input layer. The purpose is to recalculate the neural connection weights.
Another forward step follows, then another backward step, until the error
minimizes within a preset limit. For this manner of feedforward neural
network training, it has been noted that the most suitable neuron activa-
tion function is the same type as the function presented in relation (7.4)
and Figure 7.7, also called the sigmoid function. A feedforward type
neural network with three layers (input, hidden, and output), having
a sigmoid activation function, and being trained through the converse
error propagation method, can be represented schematically as in Fig-
ure 7.9. It should be noted that a larger number of neurons in the hidden
layer can guarantee a better result in network training and usage.

Copyright 2002 by Marcel Dekker, Inc. All Rights Reserved.



204 Chapter 7

FIGURE 7.9 Feedforward type neural network with three layers represented
schematically.

FIGURE 7.10 Structure of Windows Neural Network.

Copyright 2002 by Marcel Dekker, Inc. All Rights Reserved.



Neural Approach to Technical Diagnosis 205

7.2 UTILIZATION OF NEURAL NETWORKS IN
MACHINE TOOLS DIAGNOSTICS

7.2.1 Multicriteria Application for
“Good/Defective” Classification

The problem of identifying defective elements in the kinematic structure
of a machine tool can be solved by utilizing feedforward type neural net-
works. The following deals with elaboration and training of a neural
network for bearing diagnosis. The data used for network training come
from the experimental research presented in Chapter 5. Windows Neu-
ral Network is a user interface, written in Visual Basic, for building
and utilizing feedforward neural networks, fully connected and trained
through the converse error propagation algorithm. The structure of the
neural networks with which this application works (Fig. 7.10) contains
the input layer, one or more hidden layers, and the output layer. The
output channel of each neuron is connected to all neural input channels
of the next layer, which can introduce BIAS units (tendency or predic-
tion units), which facilitate the network’s training. There is no activation
function in the input layer; this layer can only distribute the input data
to the first hidden layer. The hidden layers and the output layer have
an activation function, which can be:

A linear function:

f(x, T ) = xT (7.8)

A hyperbolic tangent function:

f(x, T ) = th(xT ) (7.9)

A sigmoid function:

f(x, T ) = 1[1 + exp(−xT )] (7.10)

From a mathematical point of view, the network runs the following
algorithm.

For the hidden layer output:

h(j) =
∑

i

w(i, j)xi(i)

s(i) = f(h(j))
(7.11)

Copyright 2002 by Marcel Dekker, Inc. All Rights Reserved.



206 Chapter 7

For the output layer output:

h′(k) =
∑

j

w(j, k)xs(j)

o(k) = f(h′(k))

(7.12)

where i(i) represents the network input channels; o(k), the network out-
put channels; w(i, j), the weight of the connection of the neuron I with
the neuron j in the next layer; and f , the activation function.

The objective function has to minimize the final error:

εRMS =
pmax∑
p=I

kmax∑
k=I

[t(p, k) − o(p, k)]2 (7.13)

where t(p, k) is the output target value for the output dataset p, and
o(p, k) is the actual output value for the same dataset.

The DIAGNO neural network for identifying defective bearings has
the structure shown in Figure 7.11. The network’s dimension is given by
the number of layers and the number of neurons in each layer; conse-
quently, the built network is a 3 × 4 × 1 type, with BIAS units in
layers 2 and 3. The neuron activation function is the sigmoid function
(Fig. 7.10).

FIGURE 7.11 DIAGNO neural network for identifying defective bearings.

Copyright 2002 by Marcel Dekker, Inc. All Rights Reserved.



Neural Approach to Technical Diagnosis 207

The selection criteria for data needed to train the network are the
peak factor criterion, the diagnosis index, and the Kurtosis index. Data
corresponding to the evaluation through these criteria come from the
database of vibration signals stored and processed in the time field (see
Chapter 5); they are provided to the network in three ways. The train-
ing datasets, containing input data and the corresponding output target
parameter, are shown in Table 7.2. These data cannot be introduced
in the network as they are, since they could not be processed by the
activation functions. For instance, the sigmoid function can only take
values between −2 and 2 at the input channel; other values would sat-
urate the neuron and lead to an output with value 0 or 1 all the time.
To avoid this inconvenience, the input data should be logarithmically
or linearly normalized, as the variation field of those data is larger or
narrower. This operation is done automatically, on demand, from the
main menu of the application; the normalization can be global (to all of
the network’s nodes) or individual (node by node).

The next step is represented by the network’s converse propagation
algorithm adjustment, through the two parameters that connect the new
weights with the derivatives of the old weights, after the relations:

dW (i, j, t + 1) = ηdW (i, j, t) + αdW (i, j, t − 1)

W (i, j, t + 1) = W (i, j, t) + dW (i, j, t)
(7.14)

where η is the learning parameter and α the moment parameter. The
best results were obtained for η = 0.2 and α = 0.5, as the front panel of
this application shows (Fig. 7.12). It should be mentioned that during
the network run there was no need to introduce “noise” and “tempera-
ture” to help the network avoid getting stuck in local minimums. Since
temperature is a multiplicator of the activation function argument, not
to take it into consideration means T = 1.

The structural network training process runs in epochs. An epoch
represents the number of input datasets in terms of which weights are
calculated. Thus, if the length of an epoch is 1, a continuous training
is done (weights are recalculated after each dataset); if the length of an
epoch is equal to the number of datasets, a simultaneous training is done
(weights are recalculated after each pass over all datasets). Simultaneous
training is useful when there are few input datasets, as in the present
case. At the same time, this sort of training is faster than continuous
training. Training this neural network needed 555 iterations, that is,
555 passes over the input datasets. Training ended when the target was

Copyright 2002 by Marcel Dekker, Inc. All Rights Reserved.



2
0
8

C
hap

ter
7

TABLE 7.2 Training Datasets, Containing Input Data and Corresponding Output Target Parameter

Set number 0 1 2 3 4 5 6 7 8 9

Peak factor 10.0 7.5 20.0 27.0 6.0 25.5 26.0 29.0 14.0 24.5
Diagnosis index .500 .650 .170 .013 .800 .018 .015 .010 .400 .019
Kurtosis index 4.1 3.7 7.2 9.2 3.4 9 9.3 12.0 5.8 8.8
Target output 1 1 0 0 1 0 0 0 1 0

Copyright 2002 by Marcel Dekker, Inc. All Rights Reserved.



N
eural

A
p
p
roach

to
Technical

D
iagnosis

2
0
9

FIGURE 7.12 Front panel caption.

Copyright 2002 by Marcel Dekker, Inc. All Rights Reserved.



210 Chapter 7

TABLE 7.3 Weights wij Calculated for Each Neural Connection

Total calculated weights: 21

Between input layer and second hidden layer:

2.567564 −0.552004 −0.623598 0.690139 —
1.273501 0.300688 1.931408 −0.233710 —

−3.382554 1.183681 0.871934 1.333970 —
2.154515 −0.137544 −0.532012 −1.897794 —

Between second hidden layer and third output layer:

−2.092981 −2.371565 4.373098 −1.461245 −0.007646

reached with an error smaller than the preset one, in this case. It can
be noticed in the window with the training results (Fig. 7.12) that the
actual root mean square error is εRMS = 0.000379604.

As a consequence of training the network with experimental data,
weights wij have been calculated for each neural connection (Table 7.3),
through the converse error propagation algorithm. Weight distribution
in the network is shown in Figure 7.13 in the shape of a 10-interval his-
togram. The number of weights in each interval is represented in terms

FIGURE 7.13 Weight distribution in the network.

Copyright 2002 by Marcel Dekker, Inc. All Rights Reserved.



Neural Approach to Technical Diagnosis 211

of the weights’ value, between −4 and +4. This representation provides
information about the quality of the result obtained in the calculus of
weights: normally, for a network with the same activation function in all
layers, the weight distribution should be as close as possible to a Gauss
distribution. Figure 7.13 shows the weight distribution for a DIAGNO
neural network, correlated with data in Table 7.3. The shape of this his-
togram gets closer to a Gauss distribution, so the weights are correct.
In these conditions, a graphical representation of the actual network
outputs can be plotted at the same time as the target outputs. In Fig-
ure 7.14 the network’s target outputs, as they were set (Table 7.2), are
drawn with a solid line, and the trained network’s actual outputs with
a dashed line.

The error between the target output and the actual output can
also be plotted, as in Figure 7.15. It can be clearly seen that the neu-
ral network observes some trouble in interpreting datasets 2 and 8 (see
Table 7.2). Indeed, during the training process, the two input datasets
had been introduced artificially by the author within categories “defec-
tive” and “good.”

At this time, the DIAGNO neural network training process can be
considered finished and the network can be utilized in the classification.
Tests of the built neural network have been carried out on a group of four
datasets known from experimental research; these datasets are presented
in Table 7.4. It should be noted that this time the input target value
for each input dataset was not indicated; the neural network will have

FIGURE 7.14 Network’s target outputs, as they were set (Table 7.2) (solid
line) and trained network’s actual outputs (dashed line).

Copyright 2002 by Marcel Dekker, Inc. All Rights Reserved.



212 Chapter 7

FIGURE 7.15 Error between target and actual output.

to perform the set classification, in the manner it learned during the
training process. The weights of neural connections calculated during
the training process were used as they were during the test. After the
normalizing operation, the test data were plugged into the network. The
training parameters were kept the same (η = 0.2 si α = 0.5); it was not
necessary to use noise or temperature to avoid the network getting stuck
in false minimums. Data for running the classification test for the four
bearing types from which input data were taken are shown in Table 7.5.
The root mean square error in the test was smaller than the one that
resulted in training the network, as was expected.

Figure 7.16 illustrates the result of the neural network test: indeed,
the first two test datasets belonged to two radial ball bearings 6209 which
were working perfectly; the last two datasets were taken from the same
bearings, having pitting on the outer race track due to an intensive wear
on the stand described in Chapter 5.

TABLE 7.4 Test of the Built Neural Network Carried Out on a
Group of Four Datasets Known from Experimental Research

Set number 0 1 2 3

Peak factor 6.50 11.00 26.70 25.40
Diagnosis index 0.780 0.480 0.013 0.017
Kurtosis factor 3.50 4.50 9.70 9.10

Copyright 2002 by Marcel Dekker, Inc. All Rights Reserved.



Neural Approach to Technical Diagnosis 213

TABLE 7.5 Data for Running the Classification Test for Four Bearing
Types from Which Input Data Were Taken

RMS error: 0.000103
Good pats: 100.0%

Set
number Output actual value Output adopted value Error

0001 0.994650 1.000000 0.000029 +
0002 0.993171 1.000000 0.000047 +
0003 0.012820 0.000000 0.000164 +
0004 0.013081 0.000000 0.000171 +

In conclusion, the DIAGNO neural network is able, after a pre-
liminary learning process, to distinguish perfectly working bearings and
defective bearings with remarkable accuracy. Other tests carried out
with the same neural network, over other experimental datasets, gave
the same results every time.

7.2.2 Application for Neural Diagnosis of the
Working State

The goal of a diagnostic operation is to detect “ante factum” a defect,
in order to prevent a machine’s being out of operation due to damage.

FIGURE 7.16 Result of neural network test.

Copyright 2002 by Marcel Dekker, Inc. All Rights Reserved.



214 Chapter 7

Starting from this consideration, a neural network utilized for monitoring
and diagnosing should be able to evaluate the real working state of the
supervised element. Therefore, a neural network named DIAGNOZA has
been built, having the structure shown in Figure 7.17; this network has
been trained to classify supervised bearings into four categories:

Bearings in a perfect working state (target y = 1)
Bearings that have conditions for defects to occur (target y = 2)
Bearings in a limited working state (target y = 3)
Defective bearings (target y = 4)

The network is of the multilayer feedforward type, size 2 × 5 × 1, with
BIAS type prediction units, able to be trained through the converse error
propagation algorithm. The neuron activation function is a sigmoid one
[relation (7.10)], the same for neurons in all layers. The network is fully
connected, meaning each neural output channel from a layer is connected
to all neural input channels in the next layer.

The two network input channels were given data from the experi-
mental research and interpolations of those data (Table 7.6); the classi-
fication criteria considered this time were the peak factor criterion (Fv)

FIGURE 7.17 Structure of DIAGNOZA neural network.

Copyright 2002 by Marcel Dekker, Inc. All Rights Reserved.



N
eural

A
p
p
roach

to
Technical

D
iagnosis

2
1
5

TABLE 7.6 Data from Experimental Research and Interpolations of Those Data

Set no. 1 2 3 4 5 6 7 8 9

Peak factor 25.25 14.50 7.36 26.64 24.21 6.64 26.35 22.89 17.12
Kurtosis index 9.79 5.12 3.61 11.23 8.73 3.47 10.68 8.13 6.25
Target 4 2 1 4 3 1 4 3 2
Set no. 10 11 12 13 14 15 16 17 18
Peak factor 19.07 23.64 27.01 8.71 5.72 8.25 20.85 25.98 12.14
Kurtosis index 6.70 8.46 11.88 4.09 3.06 3.88 7.45 10.19 4.88
Target 2 3 4 1 1 1 3 4 2
Set no. 19 20 21 22 23 24 25 26 —
Peak factor 15.63 26.83 6.12 6.00 14.07 20.03 25.55 21.79 —
Kurtosis index 5.73 11.57 3.24 3.14 4.81 7.22 9.59 7.89 —
Target 2 4 1 1 2 3 4 3 —

Copyright 2002 by Marcel Dekker, Inc. All Rights Reserved.



216 Chapter 7

and Kurtosis index criterion (β2). Data were linearly normalized in or-
der to be accepted by the neuron activation function. The best results
were obtained for the values of the learning parameters η = 0.2 and
α = 0.5, without using noise or temperature as aiding factors in the
network. On the front panel of this application (see Fig. 7.18), the re-
sults of the network training can be read, after using the converse error
propagation method. Thus, after a relatively large number of iterations
(6140), the working root mean square error decreased under the preset
value ε = 0.001 for all of the input datasets.

As a consequence of the training process, 21 weights of the neural
connections were evaluated: 15 connections between layers 1 and 2, and
6 connections between layers 2 and 3, also taking into consideration the
connections of the BIAS prediction units in layers 2 and 3. These weights
are presented synthetically in Table 7.7. The histogram of this weight
distribution is shown in Figure 7.19. The envelope of these histograms
is close to a Gauss distribution, which confirms the weight calculus was
correct.

The neural network running on the input data was performed using
the simultaneous training method (the length of an epoch is equal to the
number of datasets), so the weights were recalculated after each pass
over all 26 datasets, and this allowed the training time to be shortened.
Table 7.8 presents the results of the run: the output actual values, the
target output values, and the interpreting error for each training dataset.
A graphical plot of the actual and target outputs is shown in Figure 7.20;
Figure 7.21 shows the output error histogram of the trained network. It
should be noted that the neural network had classification trouble with
sets 5 and 25, where the concordance between the evaluation criteria
was not too good.

Training of the DIAGNOZA neural network can be considered suc-
cessfully finished; DIAGNOZA may now be utilized in the problems of
diagnostic classification for which it was built. The test for the DIAG-
NOZA neural network was performed on a group of six experimental
datasets (Table 7.9), coming up after monitoring the forced wear of the
same radial ball bearings type 6209 (see Chapter 5).

After data were linearly normalized, they ran in a trained neural
network. The output root mean square error was 0.000307, therefore
under the limit of 0.001 imposed for all sets. The network identified
accurately the working state of the tested bearings; furthermore, during
the test a false target was indicated for one of the input datasets, but the
classification performed by the network did not change. This validated

Copyright 2002 by Marcel Dekker, Inc. All Rights Reserved.



N
eural

A
p
p
roach

to
Technical

D
iagnosis

2
1
7

FIGURE 7.18 Results of network training can be read after using converse error prop-
agation method.

Copyright 2002 by Marcel Dekker, Inc. All Rights Reserved.



218 Chapter 7

TABLE 7.7 Twenty-One Weights of the Neural Connections Evaluated

Total evaluated weights: 21

Between layer 1 and layer 2

1.754083 −1.154256 −0.962436 — — —
4.748973 5.315055 −2.021535 — — —
3.361797 −1.410271 3.961644 — — —
1.547162 −6.397412 4.818911 — — —

−3.090095 0.540312 −5.167025 — — —

Between layer 2 and layer 3

−2.278813 1.963403 5.296241 −4.803792 −3.292156 0.073231

that a good training of the network was achieved. Figure 7.22 represents
the actual values (the white bar) and the adopted values (the black bar)
of the network output, in the test case.

In conclusion, training of DIAGNO and DIAGNOZA neural net-
works with data obtained from experimental research led to excellent
performance of recognition and classification of elements in the machine
tool structure. The tests performed—the most representative ones have
been presented here—confirm the capabilities of this type of information
processing.

FIGURE 7.19 Histogram of weight distribution presented in Table 7.7.

Copyright 2002 by Marcel Dekker, Inc. All Rights Reserved.



N
eural

A
p
p
roach

to
Technical

D
iagnosis

2
1
9

TABLE 7.8 Output Actual Values, Target Output Values, and Interpreting Error for Each Training Dataset

RMS error: 0.000150
Good pats: 100.0%

Actual Target Actual Target
Set value value Error Set value value Error

0001) 3.966598 4.000000 0.000124+ 0002) 2.027430 2.000000 0.000084+
0003) 1.008047 1.000000 0.000007+ 0004) 3.988856 4.000000 0.000014+
0005) 3.087048 3.000000 0.000842+ 0006) 1.003739 1.000000 0.000002+
0007) 3.987121 4.000000 0.000018+ 0008) 2.956078 3.000000 0.000214+
0009) 1.933849 2.000000 0.000486+ 0010) 2.038465 2.000000 0.000164+
0011) 2.988344 3.000000 0.000015+ 0012) 3.990406 4.000000 0.000010+
0013) 1.042064 1.000000 0.000197+ 0014) 1.002214 1.000000 0.000001+
0015) 1.024447 1.000000 0.000066+ 0016) 3.014108 3.000000 0.000022+
0017) 3.982717 4.000000 0.000033+ 0018) 1.977742 2.000000 0.000055+
0019) 2.026888 2.000000 0.000080+ 0020) 3.989686 4.000000 0.000012+
0021) 1.002707 1.000000 0.000001+ 0022) 1.002615 1.000000 0.000001+
0023) 2.003102 2.000000 0.000001+ 0024) 2.939797 3.000000 0.000403+
0025) 3.905148 4.000000 0.001000+ 0026) 3.020487 3.000000 0.000047+

Copyright 2002 by Marcel Dekker, Inc. All Rights Reserved.



220 Chapter 7

FIGURE 7.20 Graphical plot of actual and target outputs.

FIGURE 7.21 Output error histogram of trained network.

TABLE 7.9 Test for DIAGNOZA Neural Network Performed on
6 Experimental Datasets

Set No. 1 2 3 4 5 6

Peak factor 8.53 23.14 16.05 25.73 18.56 23.91
Kurtosis index 3.97 8.29 5.48 9.81 6.50 8.60

Copyright 2002 by Marcel Dekker, Inc. All Rights Reserved.



Neural Approach to Technical Diagnosis 221

FIGURE 7.22 Actual values (white bar) and adopted values (black bar) of
network output in the bearings test.

7.3 FINAL REMARKS AND PROSPECTS FOR
UTILIZING NEURAL NETWORKS FOR
MACHINE TOOL DIAGNOSIS

As noted, utilization of neural networks allowed the exploitation at a
higher level of the data library coming from experimental work and
running. The success rate of the neural diagnosis depends mainly on the
following factors.

1. Neural network architecture: The number of the network’s hid-
den layers can be neither too high nor too low. A network without hidden
layers becomes a simple linear separator and does not reach its goal; on
the other hand, a too large number of hidden layers makes the learning
process inefficient. Usually, the number of hidden layers is 1 or 2. Dur-
ing the DIAGNOZA neural network elaboration, the same input datasets
and the same initial aleatory weights were used for two networks: type
2 × 5 × 1 and type 2 × 4 × 4 × 1. It was noticed that—although both
networks had a 100% success rate—the learning process took longer in
the case of the network with two hidden layers (the rapidity of conver-
gence cannot be a disadvantage, since the learning process is offline).
The classification errors were nearly one size order larger for more than
half of the training datasets.

Copyright 2002 by Marcel Dekker, Inc. All Rights Reserved.



222 Chapter 7

2. The training dataset size: It is well known and experimentally
proven that neural network performance increases when the training
dataset is larger. It is recommended that, when evaluating the necessary
number of datasets for training, the complexity of the problem to be
learned by the neural network be taken into consideration.

Information processing by means of neural networks proved to be
a viable alternative for classical monitoring and diagnostic techniques.
A comparison between the success rates of these techniques and those
based on neural processing (Table 7.10) proves that the latter are better.

As noted, the neural networks elaborated were trained with data
that had already undergone a previous process within criterial estima-
tions (the peak factor criterion, the diagnosis index criterion, or Kurtosis
criterion). But these networks are also capable of learning from unpro-
cessed data, provided the target is indicated correctly. Such an approach
could be done by building a neural network that can be trained by means
of the captured signal; this network can be represented by a power spec-
trum. Figure 7.23 illustrates this spectacular change from neural net-
works fed with structured data (Fig. 7.23a) to a neural network able
to recognize defects through a global representation of vibration signals
(Fig. 7.23b).

In previous chapters, an analysis of characteristic frequencies was
described for some elements of a kinematic chain structure. It was shown
that, within the power spectrum obtained by applying the fast Fourier
transform to the signal captured in the time field, the increase of ampli-
tude for these frequencies is the result of certain typical defects’ nucle-

TABLE 7.10 Comparison Between the Success Rates of
Classical Monitoring and Diagnosing Techniques and Those
Based on Neural Processing

No. Monitoring/diagnosing technique Success rate (%)

1. Peak factor method 50–70
2. Diagnosis index method 62–70
3. Kurtosis method 67–75
4. Spectrum comparison method 70–85
5. Envelope method 75–85
6. Diagnosis neural networks 95–100
7. Classification neural networks 98–100

Copyright 2002 by Marcel Dekker, Inc. All Rights Reserved.



Neural Approach to Technical Diagnosis 223

FIGURE 7.23 (a) Neural networks fed with structured data; (b) neural net-
work able to recognize defects through global representation of vibration
signals.

ation. The nature and proportion of these defects can be identified by
supervising the characteristic frequencies.

It is possible to build a diagnostic and classification system for
defects on the basis of power spectrum recognition, by means of a prin-
ciple schema similar to the one in Figure 7.24. In the signal captured
and then processed in the frequency field, characteristic frequencies and
eventually other characteristic parameters should be monitored; these
parameters should take the shape of a state vector. A neural network
trained with this sort of dataset provides at the output the interpreta-
tion of those data from a diagnostic viewpoint. Using a simple algorithm,
these output parameters are related to different types of defects for the
monitored/diagnosed element; the probability of the occurrence of these
defects is indicated.

Copyright 2002 by Marcel Dekker, Inc. All Rights Reserved.



224 Chapter 7

FIGURE 7.24 Principle schema of diagnostic and classification system for
defects on basis of power spectrum recognition.

Elaboration of these neural networks represents a major step in
developing diagnostic expert systems. Since the algorithmic method of
learning is generally accepted for expert systems over the method of
learning from experience, two components are necessary to build neural
networks: a memorized list of rules and a set of procedures that allows
conclusion interpolation by utilizing those rules and experimental data.
Under these circumstances, the information neural processing would be
the most advantageous way to assimilate the experience.

Copyright 2002 by Marcel Dekker, Inc. All Rights Reserved.


	HANDBOOK OF MACHINE TOOL ANALYSIS
	CONTENTS
	CHAPTER 7 A NEURAL APPROACH TO ESTABLISHING TECHNICAL DIAGNOSIS FOR MACHINE TOOLS
	7.1 INTRODUCTION TO NEURAL NETWORK THEORY
	7.1.1 INFORMATION NEURAL PROCESSING
	7.1.2 THE LEARNING PROCESS IN NEURAL NETWORKS

	7.2 UTILIZATION OF NEURAL NETWORKS IN MACHINE TOOLS DIAGNOSTICS
	7.2.1 MULTICRITERIA APPLICATION FOR “GOOD/DEFECTIVE” CLASSI.CATION
	7.2.2 APPLICATION FOR NEURAL DIAGNOSIS OF THE WORKING STATE

	7.3 FINAL REMARKS AND PROSPECTS FOR UTILIZING NEURAL NETWORKS FOR MACHINE TOOL DIAGNOSIS



	Bottom: 
	Right: 


